A physiologically based pharmacokinetic model of organophosphate dermal absorption.
نویسندگان
چکیده
The rate and extent of dermal absorption are important in the analysis of risk from dermal exposure to toxic chemicals and for the development of topically applied drugs, barriers, insect repellents, and cosmetics. In vitro flow-through cells offer a convenient method for the study of dermal absorption that is relevant to the initial processes of dermal absorption. This study describes a physiologically based pharmacokinetic (PBPK) model developed to simulate the absorption of organophosphate pesticides, such as parathion, fenthion, and methyl parathion through porcine skin with flow-through cells. Parameters related to the structure of the stratum corneum and solvent evaporation rates were independently estimated. Three parameters were optimized based on experimental dermal absorption data, including solvent evaporation rate, diffusivity, and a mass transfer factor. Diffusion cell studies were conducted to validate the model under a variety of conditions, including different dose ranges (6.3-106.9 microg/cm2 for parathion; 0.8-23.6 microg/cm2 for fenthion; 1.6-39.3 microg/cm2 for methyl parathion), different solvents (ethanol, 2-propanol and acetone), different solvent volumes (5-120 microl for ethanol; 20-80 microl for 2-propanol and acetone), occlusion versus open to atmosphere dosing, and corneocyte removal by tape-stripping. The study demonstrated the utility of PBPK models for studying dermal absorption, which can be useful as explanatory and predictive tools that may be used for in silico hypotheses generation and limited hypotheses testing. The similarity between the overall shapes of the experimental and model-predicted flux/time curves and the successful simulation of altered system conditions for this series of small, lipophilic compounds indicated that the absorption processes that were described in the model successfully simulated important aspects of dermal absorption in flow-through cells. These data have direct relevance to topical organophosphate pesticide risk assessments.
منابع مشابه
Physiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours
Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...
متن کاملDevelopment of a Physiologically Based Pharmacokinetic/pharmacodynamic (pbpk/pd) Minipig Model for Simulation of Low Level Multiple Route Cw Agent Exposure
A physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was developed to simulate the concentration and effects of low-level chemical warfare agents (CWA) in the Göttingen minipig. The model code was written to account for absorption of CWAs from multiple sites (respiratory tract – lower and upper, dermal, ocular) after vapor exposure. Literature references to minipig physiology...
متن کاملPhysiologically based pharmacokinetic model for the inhibition of acetylcholinesterase by organophosphate esters.
Organophosphate (OP) exposure can be lethal at high doses while lower doses may impair performance of critical tasks. The ability to predict such effects for realistic exposure scenarios would greatly improve OP risk assessment. To this end, a physiologically based model for diisopropylfluorophosphate (DFP) pharmacokinetics and acetylcholinesterase (AChE) inhibition was developed. DFP tissue/bl...
متن کاملAssessment of the percutaneous absorption of trichloroethylene in rats and humans using MS/MS real-time breath analysis and physiologically based pharmacokinetic modeling.
The development and validation of noninvasive techniques for estimating the dermal bioavailability of solvents in contaminated soil and water can facilitate the overall understanding of human health risk. To assess the dermal bioavailability of trichloroethylene (TCE), exhaled breath was monitored in real time using an ion trap mass spectrometer (MS/MS) to track the uptake and elimination of TC...
متن کاملA Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans.
A PBPK/PD model was developed for the organophosphate insecticide chlorpyrifos (CPF) (O,O-diethyl-O-[3,5,6-trichloro-2-pyridyl]-phosphorothioate), and the major metabolites CPF-oxon and 3,5,6-trichloro-2-pyridinol (TCP) in rats and humans. This model integrates target tissue dosimetry and dynamic response (i.e., esterase inhibition) describing uptake, metabolism, and disposition of CPF, CPF-oxo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 89 1 شماره
صفحات -
تاریخ انتشار 2006